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Abstract 

Chip designers have shown increasing interest in inte­
grating specialized fixed-function coprocessors into multi­
core designs to improve energy efficiency. Recent work in 
academia [11, 37] and industry [16] has sought to enable 
more fine-grain offloading at the granularity of functions and 
loops. The sequential program now needs to migrate across 
the chip utilizing the appropriate accelerator for each program 
region. As the execution migrates, it has become increasingly 
challenging to retain the temporal and spatial locality of the 
original program as well as manage the data sharing. 

We show that with the increasing energy cost of wires and 
caches relative to compute operations, it is imperative to op­
timize data movement to retain the energy benefits of accel­
erators. We develop FUSION, a lightweight coherent cache 
hierarchy for accelerators and study the tradeoffs compared to 
a scratchpad based architecture. We find that coherency, both 
between the accelerators and with the CPU, can help minimize 
data movement and save energy. FUSION leverages temporal 
coherence (32] to optimize data movement within the accelera­
tor tile. The accelerator tile includes small per-accelerator LO 
caches to minimize hit energy and a per-tile shared cache to 
improve localized-sharing between accelerators and minimize 
data exchanges with the host LLC. We find that overall FU­
SION improves peiformance by 4.3 x compared to an oracle 
DMA that pushes data into the scratchpad. In workloads with 
inter-accelerator sharing we save up to 10x the dynamic en­
ergy of the cache hierarchy by minimizing the host-accelerator 
data ping-ponging. 

1 Introduction 

Current trends in microchip design indicate that to meet 
power budgets designers would have to power down an in­
creasing fraction of the components on a chip [28]. Prior 
research in both industry and academia [24] have sought to 
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Sequential Program 
Readjmage(injmg[)) 
tmp_1[] = step1( injmg[] ); 
tmp_2[] = step2( tmp_1 [] ); 
out img[] = step3( tmp 2[] ); 

Readjmage(injmg[]) Fixed-function Accelerators 

ouUmg[] = step3(tmp_2[]); : 

Top: Image processing application that processes the input in 3 steps .  

An application representative of these steps would be "histogram" in our 

benchmark suite. Bottom: Multicore chip with fixed-function accelerators. 

AXC-I  and AXC-2 are accelerators collocated in a single tile. The? 

indicate the design questions addressed in this paper: the cache hierarchy for 

accelerators, efficient data migration between accelerators, and the tradeoffs 

when transferring data to/from the host. 

Figure 1: Offloading Sequential Prog ram to Accelerators 

address the power challenge through the use of hardware spe­
cialization (aka., accelerators) that target specific program 
regions. Prior work [11, 12, 36] has sought to extract acceler­
ators from program regions such as functions and loops. We 
find that a key challenge to retaining the energy efficiency 
of accelerators is the data movement as the program moves 
around the chip seeking accelerators. This challenge is partic­
ularly relevant today as wire communication energy and cache 
access energy dominate compute energy in fixed function ac­
celerators. Accelerators improve efficiency of the compute 
datapath to the level at which the overall energy consumption 
is primarily dominated by memory operations [12]. It is im­
portant to optimize data access energy to ensure that we retain 
the overall energy benefits from the use of accelerators. In 
this paper, our quantitative analysis focuses on fixed-function 
accelerators [12] to highlight the energy overhead of data mi­
gration between accelerators. However, we believe that the 
overall qualitative conclusions should extend to other accel­
erator types. Prior work has recognized the need to minimize 
short data movement between producer and consumer opera­
tions within an accelerator [26]; here, we focus on data sharing 
and data movement between accelerators. 

We highlight the design challenges with an image pro­
cessing application in Figure 1. The application reads 
an image and passes it through ditlerent step functions 



( stepl () , step2 ( ) ,  step3 ( ). In the contrived ex­
ample, stepl ( ) and step2 ( ) are accelerated by the ac­
celerators AXC-l and AXC-2 respectively while step3 ( ) 
continues to run in software on the host processor. The 
key questions are i) how are data elements in_img [l and 
out_img [l transferred between the host and the accelerator 
and ii) how do the accelerators, AXC-l and AXC-2, exchange 
the intermediate data (tmp_l ( ) ). 

Industry vendors, spurred by the need to reduce the latency 
overhead of host-accelerator communication, have developed 
coherent direct memory access (DMA) engines [4, 10, 16] that 
transfer data directly from the host's LLC into the acceler­
ator's explicitly managed local storage (scratchpad). While 
this approach is suitable for computation ally intensive accel­
erators with few memory operations it is inefficient when 
fixed-function accelerators offtoad functions that share data 
with each other. The DMA-based approach requires multi­
ple data transfers between the accelerator's scratchpads and 
the host, expending significant cache and interconnect energy. 
The DMA overhead is particularly notable compared to the 
"un-accelerated" system in which the inter-function data reuse 
would be captured by the cache hierarchy of the core running 
the sequential program. Also accelerators that are not compute 
dominated may experience performance overhead due to the 
DMA transfers on the critical path. Recent research [36, 41] 
has recognized the importance of collocating accelerators to 
minimize data transfer overhead. They integrate fixed-function 
accelerators at the host, and the Ll cache is shared between 
the host and the accelerators. Sharing the Ll cache helps min­
imize the overhead of data transfers between accelerators and 
enables participation in coherence. However, the shared Ll 
cache also introduces a challenge. We show that accelerators 
exhibit different memory level parallelism. To ensure that 
we retain the energy and performance benefits of the fixed 
function accelerators [12], the cache hierarchy needs to be 
optimized. We also show that the load-to-use latency and en­
ergy of the shared cache might minimize the benefits of fixed 
function accelerators. Additionally, the datapath of an in-core 
accelerator is limited by the bandwidth afforded by TLB, Ll 
cache, and register file ports of the core. 

In this paper we focus on fine-grain offloading of multiple 
functions from a sequential program. We find that cache and 
coherence protocol optimizations are even more important 
today since with fixed-function accelerators the data move­
ment constitutes the dominant overhead. We propose, FU­
SION, a multi-level coherent cache hierarchy for accelerators. 
FUSION adopts a split organization in which fixed-function 
accelerators are grouped in a physical "tile" and implement 
a localized lightweight memory hierarchy with private LO 
caches per accelerator (LOX) and a shared Ll (Ll X) cache per 
accelerator-tile. The private LOX caches data and act like a 
scratchpad to capture the locality within an offloaded function, 
and ensure low load-to-use latency and energy for the memory 
operations. The shared LIX captures the inter-function tem-
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poral and spatial locality between functions offloaded to the 
accelerators. Typically sequential programs tend to include 
multiple functions suitable for acceleration like the image pro­
cessing example and a lightweight multi-level hierarchy is 
needed to capture this locality while minimizing energy for 
the access to the cached data elements. 

Coherence is maintained locally within the accelerator tile 
between the LOXs and LIX using time-stamp based coherence 
protocol [22, 31, 32]. Implementing lightweight coherence 
between the private LOXs and the shared LIX eliminates the 
need for "DMA-ing" (programmed explicit copying) data be­
tween accelerator cores. FUSION removes the ping-pong 
effect of moving data out of an accelerator scratchpad into 
the host's coherence space (at the shared L2) and then into 
another accelerator scratchpad. Overall FUSION saves band­
width between the L2 and the accelerator tile and hence energy 
in the on-chip interconnect. In this paper, we also propose 
FUSION-Dx, that further optimizes the inter-accelerator data 
sharing the accelerated functions similar to the example in 
Figure 1. In such cases FUSION-Dx leverages the accelerator 
tile's coherence protocol to proactively forward the dirty data 
from the producer accelerator's LOX to the consumer acceler­
ator's LOX, thus saving write energy to the shared LIX and 
minimizing load-to-use latency for the shared data. Overall, 
we also discuss the energy benefits of the timestamp-based 
coherence which minimizes coherence messages, permits relo­
cation of the TLBs to cache miss path, and enables pro active 
data movement optimizations. 

FUSION is evaluated using a variety of applications drawn 
from the SD-YBS [35] and Machsuite [27] benchmark suites. 
FUSION eliminates the DMA transfers required to transfer 
data between accelerators and on average reduces energy by 
2.5 x .  Like scratchpad based systems, FUSION exploits the 
temporal and spatial locality to minimize the accesses to the 
shared cache. Additionally, FUSION-Dx saves up to 17% 
of the dynarllic link energy, for accelerators sharing data, by 
eliminating the shared LlX from the critical path. 

The rest of the paper is organized as follows: Section 2 
describes the baseline architecture and the challenges in de­
signing a cache hierarchy for accelerator. We also characterize 
the behavior of functions offtoaded to accelerators. Section 3.1 
provides an overview of the FUSION architecture and high­
lights the benefits compared to the scratchpad approach and 
shared cache approach, and Section 3.2 provides a detailed 
description of the architecture and discusses the details of the 
protocol and cache layout. Section 4 details the evaluation 
toolchain and finally in Section 5 we present the quantitative 
tradeoffs between the different cache organizations. 

Lessons Learned 

• Coherency mechanisms help optimize data movement. 

We find that localized cache coherence within the acceler­
ator tile help optimize data sharing between accelerators 
while minimizing interaction with the host's LLC to save 
energy. 



• DMA transfers increase energy overhead. We have ana­
lyzed the traffic caused by repeated DMA transfers and find 
that significant energy is expended in applications which 
share data between functions. 

• Need to eliminate request messages. Caches operate in a 
pull-based mode and potentially expend significant energy 
in the network links that may offset the gains obtained from 
eliminating host-accelerator DMA transfers for compute 
intensive accelerators. 

• Write forwarding can reduce cache energy. We find that 
accesses to the shared LIX can expend significant energy 
in accelerators and proactive transfer of data between accel­
erator caches directly can save significant energy. 

2 Background and Motivation 

In this section, we characterize the two baseline architec­
tures currently explored by recent accelerator studies [12, 41]: 
SCRATCH and SHARED. Later in the section we present the 
characteristics of accelerators derived from sequential pro­
grams. We using the image processing example shown in 
Figure 1 to highlight the overheads that may arise when run­
ning on SCRATCH and SHARED designs. 

Step30. 
@host 

SCRATCHPAD 

DMA 

DMA 
(2pj/byte, 10 cycles/block) 

AXC-1 AXC-2 

o e D MA input to 
scratchpad 

tD � D MA dirty data 
from scratchpad 

Overhead 

2.1 Baseline Architectures 

Scratch pad per Accelerator (SCRATCH): Both ARM [10] 
and IBM [4] have enabled coherent access to the shared LLC 
from the accelerators. The coherence is limited to the DMA 
operations reading the most up-to-date data from the shared 
last level cache (LLC); writebacks from the scratchpad are 
managed using DMA. In Figure 2 the individual accelerators 
each include a scratch pad that connects with the shared L2 in 
the multicore through a coherent DMA controller. The scratch­
pad approach is well suited system which are either compute 
intensive (e.g., Cryptographic Unit [4]) or there is minimal 
interaction between accelerators (Cell SPE [34]). However, 
when functions or loops from sequential programs are of­
ftoaded to accelerators the shared data needs to be carefully 
managed as the program execution migrates between the dif­
ferent accelerators. 

We illustrate the operation SCRATCH with the image pro­
cessing example. To initialize the accelerator the host proces­
sor fills in the input data block at the shared L2 and DMAs the 
block to the accelerator (Steps 8,8). In the evaluation (see 
Section 5) we find that the proactive pushing of data into the 
scratchpad is one of the key benefits of DMA compared to a 

SHARED-L1X 
I 

M : -. -.- -.-- _ _--.-. -c.--
El 
S : ;::::=� ;::::=� 
I : I I �====�======��================� 
: 1� ____________ S_h_a_r_ed __ L_2 __________ � 

Shared L2 Shared 
@Host L1X AXC-1 

�! �·I: • •• 
• • 

Step10 

AXC-2 

�:����::li __ �1I 

;�. -1'---..:...::;..= • • 
• Step30. 

@host 
Figure 2 :  Left : SCRATCH Architecture. Per-accelerator scratchpads i nto which DMA transfers data. Switches to a different 

accelerator Right:  SHARED. Shared L 1 cache between the accelerators in a t i le .  The Shared L 1 cache is kept coherent with the 

host multicore throug h  M ESI protocol .  Host shared L2 mai ntains inclusion with the accelerators shared L 1 X. 
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cache hierarchy which operates in a pull-based mode. We find 
that coherence request messages expend significant energy in 
links. The scratchpad size per accelerator introduces a tradeoff. 
A large scratchpad reduces the number of DMA operations 
and amortizes the cost of DMA but increases the load-to-use 
latency and load-to-use energy during accelerator execution. 
With the data accesses dominating the energy consumption in 
fixed-function accelerators [30], scratchpads tend to be small 
requiring repeated DMA. Another challenge is the interaction 
between multiple accelerators. As shown in Figure 2, when 
the program switches from stepl () to step2 () , DMA 
is needed to transfer the temporary data (tmp_l [ 1 ) from 
AXC-l's scratchpad to the shared L2 and then into AXC-2's 
scratchpad (. and 8>. Our analysis of data access patterns 
reveals that functions drawn from the same program tend to 
have significant data sharing (see Table 1 below). 

SHARED between Accelerators: Current work in 
academia [11, 36] and industry [13] are exploring the bene­
fits of "at-the-core" accelerators that share a host core's Ll 
cache which enables the accelerators to efficiently transfer 
data between the host and the accelerators and between the 
accelerators. Unfortunately, the shared Ll needs to be sized 
to accommodate both software threads running on the host 
processor and the various accelerators. Since fixed-function 
accelerators expend minimal energy on the operation itself 
the load-to-use latency and energy of the shared Ll cache 
constitutes a significant overhead [30] in today's wire limited 
era [7]. In this paper, we explore the benefit of multi-level 
caches for accelerators and demonstrate how to efficiently 
maintain coherence in the hierarchy. 

Figure 2 : SHARED-LlX illustrates the SHARED architec­
ture; we only show a single tile of accelerators. In SHARED, 
a tile of accelerators is connected to a multibanked Ll shared 
cache (Shared LlX) through a common switch. The accelera­
tors incrementally load data into the shared cache as they run. 
As shown in steps et and f}, the accelerators are activated on 
a context switch once the basic register state is transferred. All 
accesses from the accelerators are issued to the shared LIX 
cache which appears as just another Ll agent to the coherence 
protocol and participates in the MESI operations. The host's 
shared L2 maintains inclusion with the LIX. Compared to 
SCRATCH all accesses from the accelerators are issued to 
the LIX which has a higher load-to-use latency and energy. 
Our SHARED architecture is similar to both Dyser [11, 29] in 
that accelerators share a common Ll cache that participates in 
coherence operations; in our model the host processor resides 
on a separate tile. Since caches tend to dominate the over­
all energy consumption in fixed function accelerators, earlier 
work [25] has recognized the need for customizing the cache 
size and organization for individual accelerators [12,30]. How­
ever, there is a tradeoff between optimizing the shared L 1 X 
for data sharing between accelerators while supporting low 
load-to-use latency and energy per accelerator. Prior work [41] 
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has managed the coherence between the host cache and the 
scratchpad using explicit instructions. 

Table 1: Accelerator Characteristics 

Function % Time %INT I %FP I %LD %ST I MLP I %SHR 
FFT 

step l 27 .3  28 7.8 46 .3 17 .9  4 .8  56 .3 
step2 8 .8  52. 1 0 29.9 1 8  4.0 99.5 
step3 28.7 3 1 .6 7 .5  43 .2  17 .7 4 .4 6 1 .5 
step4 8 .5  49 0 3 l .8 19 .2  2.9 50.8 
stepS 8.4 49 0 3 l .8 19 .2  2.9 50.8 
step6 1 8 .4 20.3 3 .3  53 .8  22.6 4.3 1 9 .4 

Disparity 
padarray4 7.7 71 0 1 5 .2 1 3 . 8  5 . 0  50 
SAD 7.7 57.9 8 .2 17 .6 16 .3  3 .0  33 .3  
2D2D 15 .4  62 .8  0 24.9 12 .3  3 .5  49.7 
finalSAD 30.8 22.8 0 7 1 .3 5 .9 5 .7 47 .9 
findDisp. 23 . 1  32.7 32.3 30.7 4.3 2.2 3 1 .4 

Tracking 
imgBlur 14.3 52.8 1 5 . 1  24 8 . 1  2 .0 58 
imgResize 14.3 57. 1  1 l .4 26.3 5.2 1 . 3  99.9 
calcSobel 28.6 52.8 17 .4 22.8 7 . 1  1 .0 32.5 

ADPCM 
coder 50 32.8 0.0 56.0 1 l .2 l .6 99.0 
decoder 50 40. 8  0 . 0  48.0 1 1 .2 1 .7 98 .9 

Susan 
bright 1 .0 22.5 48.9 20.3 8 .4 2.2 59.4 
smooth 66.2 24.3 0.0 67 .6 8 . 1  2 .0 36.2 
corn. 13 .2  3 3 . 1  1 . 3  6 1 .0 4.6 2 . 1  7 . 6  
edges 20.6 32.6 l .6 60.3 5.5 l .9 12 .3  

Filter 
medfilt 74.4 48.2 0.0 49 . 1  2.7 l .6 14.2 
edgefilt 25.5 4 1 . 3  23.9 28 . 1  6.7 4. 1 23 . 1  

Histogram 
rgb2hsl 48.2 22. 1 5 1 . 8  20.7 5.4 3 .5  8 .3  
histogram 3 .6  40 0 53 .3  6 .7 l .0 1 00 
equaliz. 3 .6  36 0 . 1  59.9 4 1 .0 66.2 
hsl2rgb 15 .7  26.3 40. 8  22 . 1  10 .8  3 . 1  75.0 

See SectIon 4 for detaIled descnptlon of our toolcham 

Fixed-Function accelerators from Sequential Applica­

tions: Table 1 lists the characteristics of the specific func­
tions we accelerated from our benchmarks drawn from Mach­
suite [27] and SD-YBS [35]. We focus on the workloads in 
which multiple functions can be offloaded to accelerators and 
share data between the accelerated functions and the host pro­
cessor. Please refer to Section 4 for a detailed description of 
our toolchain. The term "accelerator" is used in different con­
texts so we have listed the function names and their features 
to clarify to the reader the granularity; in this paper we extract 
accelerators from loops and functions of sequential programs. 

To choose the appropriate accelerators for this study we 
profiled the sequential programs on a Intel Core i5 processor. 
Table l:%TIME lists the fraction of total time spent in the 
individual functions. In many of our applications (other than 
histogram) the critical path includes multiple functions and the 
functions are invoked repeatedly (possibly from different sites 
in the program). The breakdown of the operations within each 
accelerated function (%INT, %FP, %LD, %ST) is also pre­
sented in Table 1. The operation breakdown is obtained from 
the fixed-function hardware extracted from the dataftow graph 



of the accelerator (see Section 4). Given the dominance of in­
terconnect energy (c::=lpJ/mmlbyte [7]) and cache energy [l2] 
compared to operation energy (0.5pJ/integer add [2]) in fixed­
function accelerators it is imperative to capture the spatial 
and temporal locality and thus reduce the energy for load and 
store operation. The sharing degree (%SHR) characterizes 
inter-accelerator communication. We define the sharing de­
gree (%SHR) to be the fraction of cache blocks accessed by 
the accelerator that are also accessed by at least another accel­
erator. The %SHR here is reflective of the temporal locality 
in the original application between functions and manifests 
itself as data transfers between individual accelerators. In 
our applications, apart from the initialization functions (e.g., 
rgb2 h s 1 in Histogram) in our accelerated functions the av­
erage %SHR is c::= 50%. Even in cases where only a small 
fraction of application time is spent (e.g., paddaray4 in 
Disparity, Equaliz. in Histogram) the %SHR degree can 
be significant (50%+). In such cases, if we do not ensure low 
overhead data transfers into the functions, the overheads could 
potentially dominate the overall energy consumption of the 
accelerator. The final columns, LT, presents the Lease Time 
(used in the ACC protocol, see Section 3.1) assigned to each 
cache block in the LOX per function per benchmark. 

Summary 

• When multiple functions from a sequential program are of­
floaded to accelerators the data sharing needs to be carefully 
managed. 

• Fixed-function accelerators access both private and shared 
data and we need a multi-level cache hierarchy to effec­
tively capture the locality of the accelerators and reduce 
data access energy. 

• To effectively manage sharing between accelerators and 
maintain data across a multi-level cache hierarchy scattered 
across accelerators we need to employ low-overhead cache 
coherence that minimizes control messages. 

3 FUSION: A Coherent Accelerator Cache 

Hierarchy 

3.1 Design Overview 

FUSION is a multi-level coherent cache hierarchy for the 
accelerator tile that supports i) low load-to-use latency and 
low load-to-use energy for each fixed-function accelerator, 
ii) low overhead data sharing and data migration between 
accelerators within the tile, and iii) efficient data migration 
between the host and the accelerator. FUSION collocates 
fixed-function accelerators in a separate tile and implements 
a separate coherence protocol and cache hierarchy within the 
accelerator tile. The system can support multiple accelerator 
tiles, though in Figure 3 only a single accelerator tile is shown. 

Figure 3 depicts the architectural details and we focus on 
the overall hierarchy herein to illustrate the tradeoffs between 
FUSION and existing designs, SCRATCH and SHARED. Pri­
vate LOX caches, which can be sized independently, are provi­
sioned for each accelerator within a tile to optimize load-to-use 
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latency and energy [25]. All the private LOXs are connected to 
a banked, shared LlX cache. The LOX supports write caching 
(unlike private caches in GPUs) to minimize write bandwidth 
and link energy. FUSION maintains coherence between the 
private LOX and shared LlX using the ACC (ACcelerator Co­
herence) protocol (details of ACC are presented in Section 3.2). 
The shared LIX is the ordering point and is a participant in 
the CPU's MESI protocol actions. 

As shown in the timing diagram (Figure 3), like SCRATCH, 
FUSION caches the private data for the functions stepl ( ) 
and step2 ( ) in the LOX for energy efficiency. Like 
SHARED, FUSION enables the shared data (tmp_l [ 1 ) 
produced by stepl ( ) to be communicated efficiently to 
s tep2 ( ) without requiring intervention of the host proces­
sor (unlike SCRATCH which uses DMA). Finally, AXC-2 
writes back the tmp_2 [l which the host processor incremen­
tally fetches as it runs step3 ( ) . Thus FUSION eliminates 
DMA transfers from the critical path, allowing fixed-function 
accelerators to incrementally fetch data when needed. More 
importantly, the extraneous DMA operations between acceler­
ators are also eliminated. 

FUSION-Dx further optimizes the data migration between 
accelerators to save energy. Note that while FUSION elimi­
nates the DMA required when execution switches to a differ­
ent accelerator, (e.g. step2 () ) it requires subsequent read 
misses to transfer data from the shared LIX to the consumer 
LOX. We find that the control messages for requests fetching 
intermediate data (e.g. tmp_l [ 1 ) expends significant energy 
(see Section 5.2 : Lesson 4) compared to SCRATCH . FUSION­
Dx (see Figure 3, bottom right) optimizes producer-consumer 
sharing found between the accelerators by proactively pushing 
the data from the producer's (AXC-l) cache into the con­
sumer's (AXC-2) cache and eliminates cold misses. Overall, 
FUSION-Dx eliminates the writeback from AXC-l's LOX to 
the LIX, AXC-2's read miss and the LIX access. 

3.2 FUSION Architecture 

In this section, we describe the architecture of FUSION 
and illustrate how individual accelerator and host memory 
operations, as well as their interaction, are handled. As de­
picted in Figure 3 the architecture is segmented into separate 
host and accelerator tiles. Only the operations within a sin­
gle accelerator tile are described for brevity. The accelerator 
tile operates on virtual addresses and maintains coherence 
between LOXs and the shared LIX using a time-stamp based 
coherence [22, 31, 32] protocol. 

Virtual Memory:  In FUSION, the accelerators operate with 
virtual addresses while the host processor operates with physi­
cal addresses. This design eliminates TLB's from the critical 
path of accelerator memory operations and minimizes the en­
ergy consumption per memory access. Figure 3 (top) shows 
the point of virtual-to-physical translation in FUSION; we 
address the issue of synonyms in the Appendix. Process id 
(PID) tags are added to the LOXs and LlXs to ensure that 



FUSION Architecture 

Physical addresses Virtual addresses 

i - - - .J Cache Lme I GTlme I 

I Cache line metadata for ACC Protocol 

MESI protocol ACC protocol 
i) LOX LTime: Local time. Line valid if TIME < LTIME 
ii) L 1X GTlME: Line cached by sharer LOX if GTIME < TIME. 

Virtual memory support 
ii) AX-TLB : Translates virtual address to physical address 
iii) AX-RMAP: Translates physical block address to virtual address (L 1 X line ptr: way and set) 
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FUSION: B aseline FUSION system that uses per-accelerator private caches (LOX) and a shared L l X  to implement a multi-level hierarchy for accelerators. 

FUSION-Ox: Optimizes the accelerator coherence protocol (ACC) for direct Wr-forwarding between LOX of accelerators. 

Figure 3: Top :FUSION Architecture_ Botto m :  Timeline for i mage processing example on FUSION and FUSION-Dx_ 

accelerators executing functions from different processes can 
co-exist on the same tile. The private LOXs and shared LIXs 
are indexed using virtual addresses on AXC memory opera­
tions. Since ACC is a self-invalidation protocol there are no 
internally forwarded coherence requests that need to look up 
the LOX caches. We add a TLB (see AX-TLB in Figure 3, 
top) on the miss path of the shared LIX when transiting from 
the accelerator tile to the host tile; the translation is needed to 
index into the shared L2 and participate in MESI actions. 

Since the host uses physical addresses, a reverse translation 
(physical to virtual address) is needed to handle forwarded 
requests from the shared L2 to the LIX. A naive solution 
is to include the virtual address for the memory access in 
the coherence control message. Unfortunately, this doubles 
the size of the control message for all host memory requests 
since it is not known beforehand which ones may need to be 
forwarded to the accelerator tile. In the current wire energy 
dominated era, this is not an energy efficient solution. Instead, 
we chose to expend area and dedicate a separate accelerator 
reverse map (AX-RMAP) per accelerator tile. The AX-RMAP 
maintains the physical address of the lines in the shared LlX; 
it is indexed using physical block address and stores a pointer 
to the shared LlX line. Since the shared L2's directory acts as 
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a filter (sharer list indicates if an accelerator tile has cached 
the line), only few requests are forwarded to the accelerator 
and require and AX-RMAP look up. Section 5.6 evaluates the 
proposed address translation scheme for the accelerator tiles. 

Accelerator Coherence (ACC) Protocol: ACC is a time­
stamp based self-invalidation protocol similar to protocols pro­
posed for mUltiprocessors and GPUs [22, 31, 32]. ACC adds 
two important write optimizations for accelerators compared 
to the earlier approaches: Write caching and Write forward­
ing. We describe the baseline writeback caching here and 
implement write forwarding as part of the FUSION-Dx system 
described below. ACC is a self-invalidation protocol and is a 
strict 2-hop protocol that requires no extra coherence messages 
over the baseline scratchpad systems. The reduced need for 
coherence makes it attractive for the purpose of accelerators 
from an energy perspective. Note that the primary purpose of 
ACC is to enable data migration between accelerators without 
host intervention (DMA) as the program context migrates and 
not concurrent sharing between different accelerators. The 
ACC protocol supports sequential consistency semantics for 
accelerator execution. 

Figure 3, FUSION Architecture (top), shows the compo-



nents of ACe. Only the accelerator cores within a single tile 
need to have a synchronized time-stamp register since ACC 
implements coherence only within a tile. A small time-stamp 
field (32 bits) is added to each cache line in the private LOX 
and shared LlX caches, as shown in Figure 3 (top). The local 
timestamp value (LTIME) in the Ll cache line indicates the 
lease time, essentially the time until which the particular cache 
line is valid. An LOX cache line with a local time-stamp less 
than the current system time is invalid. The global time-stamp 
(GTIME) in the LlX indicates a time by when all LOX caches 
will have self-invalidated the particular cache line. 

Figure 4 (left) shows how ACC handles accelerator load and 
store misses. When AXC-l issues a load request to the shared 
LlX, it requests a read-only epoch for the address (A) ending 
at time T=lO - 8. The shared LlX receives AXC-l's load 
request (including the epoch request), records it and forwards 
it to the host-side along with a pointer to the LlX location 
(way and set). When transiting into the host tile, the AXe's 
load request is translated to a physical address. When the 
request crosses over to the host tile, it appears as a MESI load 
request from an Ll to the host's L2. 

We have implemented a directory based 3-hop MESI proto­
col that takes the requisite actions to supply the requested data 
to the LlX. The data response includes a pointer to the LlX 
location so that on transitioning into the accelerator tile (which 
uses virtual addresses), the data response can update the he 
appropriate LlX entry. The shared LlX then replies to AXC-l 
with the data and time-stamp of T=lO - e. The time-stamp 
indicates to AXC-l that it cannot use this location beyond 
time T=lO - e. Subsequently, AXC-l requests a write-epoch 
that expires at T=l5 - e. To satisfy this write request the 
LlX implicitly locks the line and updates the LlX time-stamp 
to T=l5. Subsequent readers or writers detect the locked line 
and simply stall at the LlX until the write lease expires and 
writeback completes. AXC-l triggers a self downgrades and 
issues a writeback to the LlX - "at T=l5. When AXC-2 is­
sues a read request - (0- the LlX finds the global time-stamp 
(T=20) to be less than the current time (T=25) and checks if 
the write back has completed and waits if necessary. Once the 
write back is complete, the LOX responds with a read lease. 

A key implementation decision is how to implement self 
downgrade. This requires checking for dirty lines in the cache. 
We implement the downgrade checks without sweeping the 
entire cache by using the time-stamps as a filter. Each LOX 
cache set includes a writeback time-stamp (the earliest write 
lease in the set); each accelerator includes a writeback time­
stamp for the entire LOX cache (the shortest lease time-stamp 
amongst all the sets). These timestamps are used to filter 
the checks for the dirty lines. The writeback timestamps are 
updated whenever the dirty bits in the cache are updated. 

Overall, accelerators can acquire both read and write 
epoch's on the cache line and the shared LlX distinguishes 
such cases; subsequent accesses stall on write epochs, while 
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reads are permitted in conjunction with other read epochs. 
The epoch requests are fixed based on the expected latency of 
the accelerator invocation since it experiences minimal non­
determinism (only due to memory hierarchy). 

Figure 4: Left : ACC protocol servicing requests from acceler­

ator and i nteraction with M ESI_ Right:  ACC Protocol servicing 

forwarded requests from MESI.  

Integrating ACC with MESI: Herein we describe how ACC 
participates in MESI operations. Exclusivity is maintained 
between the host processor tile and accelerator tile. The shared 
LlX always caches a block in exclusive state irrespective of 
the accelerator operation (read or write). When participating in 
the MESI protocol the shared LlX states map to a 3-state MEI 
protocol (M: modified, E: exclusive and clean, !:invalid). The 
ACC protocol responds in the same manner to all forwarded 
host coherence requests; i.e. relinquish ownership when the 
GTIME time-stamp expires and send an eviction notice to the 
shared L2. The shared L2 has perfect information on whether 
the accelerator tile is caching the block and eliminates any 
extraneous coherence messages that a cache would need to 
deal with as a result of silent drops from S-+I. When a block 
is in I state in the accelerator tile, the LlX will not receive any 
messages from the shared L2 for that block. 

Figure 4 (right) illustrates a forwarded request from the 
host processor. The host processor performs a store operation 
which results in a forwarded request to the accelerator tile. The 
forwarded request translates the physical address to the shared 
LlX pointer via the Accelerator Reverse Map (AX-RMAP) 
- 8. A key benefit of the time-stamp based approach of the 
ACC protocol is that shared LlX will filter out the MESI Fwd 
messages and not forward them to the LOX. In the illustration, 
the forwarded request is received at time T=5 while the block is 
cached in the private LOX until time T=l5. The Fwd message 
triggers an eviction from the shared L 1 X to a writeback buffer­
e- but the response eviction notice is stalled until time T=l5. 
At T=l5, a PUTX (eviction notice) is sent back to the shared 
L2 - e. The shared LlX uses the GTIME (see Figure 3, 



top) to ascertain when it is safe to respond to MESI protocol 
action and does so without involving the private LOXs. In 
our workloads, we observed between up to -::::800 forwarded 
requests from the CPU to the accelerator tile for the whole 
workload. (TRACK:SI7, ADPCM,DISP :-::::500, others < 50). 

FUSION FUSION-OX 
Shared 

L1X AXC-1 AXC-2 Q) 
Shared 

L1X AXC-1 AXC-2 
E 
F 

5 

o 

Stall 5 
LOA 

A#25 

R: Read D: Data, A#15: Cache block A with LTIME=15. 
PUTX: Writeback; Fwd: Forwarded messages 

Figure 5 :  Left : FUSION without write forward ing.  Right:  

FUSION-Dx. ACC protocol with write forwardi n g .  

FUSION-Dx - Extending ACC to support Forwarding: 

A key overhead present in the cache based coherence model 
(pull-based) versus the scratchpad based DMA model (push 
based) is the extraneous control messages issued per cache 
miss. While the control message overhead is minimal in a 
multicore [31] or GPGPU [32] context, for fixed-function 
accelerators, they add notable overhead to the overall energy 
consumption. One particular source of inefficiency is the store­
load forwarding shown in Figure 5:FUSION. AXC-l writes 
to A - 8- but does not complete processing until later - •. 
In the meantime, AXC-2 wishes to read the data but has to 
stall until AXC-l self-evicts the line. There are two ineffi­
ciencies in the contrived example: i) the coherence messages 
(write back, read request and data response) needed over the 
LOX-L1X link wire and ii) the stalled read on AXC-2. With 
accelerators exploiting all available operation parallelism and 
reducing compute energy consumption, a significant challenge 
in our workloads is the energy cost of the coherence messages. 
FUS/oN-Dx optimizes by providing a mechanism to directly 
forward data from AXC-l to AXC-2. For MESI protocols 
such "proactive" forwarding requires significant complexity 
and involvement of the coherence directory [17]. With the 
ACC protocol, forwarding simply involves self-eviction and 
forwarding the data with the already requested lease lifetime 
(see Figure 5: FUS/oN-Dx). Forwarding without informing 
the shared L1X is feasible with ACC since the L1X only tracks 
the lease epoch and is not concerned with the owner of the 
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lease. The only challenge is to identify the stores that may 
benefit for forwarding and the producer-consumer cores. In 
this work, where the simulation infrastructure is trace driven 
(see Section 4), we post process the trace to identify the stores 
to be forwarded from the producer to the consumer accelerator. 

4 Toolchain and Benchmarks 

We have developed a detailed cycle accurate simulator that 
models the host cores, fixed-function accelerators and memory 
system faithfully. The host 000 core pipeline is modelled 
in detail using macsim [1] and the memory hierarchy using 
GEMS [21]. Table 1 characterizes the accelerators that we 
extracted; we assume that all accelerators derived from an 
application are collocated on the same accelerator tile. 

Modelling accelerator cores: To identify and model the 
fixed-function datapath of the accelerator we adopt a tech­
nique similar to Aladdin [12]. The applications are profiled 
using gprof which identifies the critical functions and the 
function call hierarchy. Based on the gprof profile, we iden­
tify top level functions for acceleration and ensure that ac­
celerated functions are free of external library calls such as 
malloc. A dynamic trace of these functions is used to gener­
ate a constrained dynamic data dependence graph that includes 
program order constraints (control and memory dependencies). 
To model the fixed function accelerator we traverse the activity 
of the constrained data dependence graph on a cycle-by-cycle, 
generating any requisite memory operations in a cycle and 
stalling the appropriate operations as necessary based on the 
availability of allocated resources. We assume an aggressive 
non-blocking interface to memory. 

Table 2 :  System parameters 

Host Core 2 GHz, 4-way 000, 96 entry ROB, 6 ALU, 2 FPU, 
INT RF (64 entries), FP RF (64 entries) 
32 entry load queue, 32 entry store queue 

L l  64K 4-way D-Cache, 3 cycles 
LLC 4M shared 1 6  way, 8 tile NUCA, ring, avg. 20 cycles .  

Directory MESI coherence 
Main Memory 4ch,open-page, 1 6GB 

32 entry cmd queue, 200 cycle latency 
Accelerator Cache Hierarchy 

Scratch pad 4 or 8KB RAM (ITRS HP) 
Shared-L lX 64KB or 256KB , 1 6  banks. 8 way. (ITRS, HP) 
Private LOX 4 or 8KB Cache (ITRS HP) 

# of AXCs 2 (FILT) - 6 (FFT) 
Link Energy Parameters 

Accelerator-L lX (O.4pJlbyte), L lX-Host L2 (6pJlbyte) 

Systems compared: We evaluate the following systems: 
i) Oracle-SCRATCH: For the SCRATCH system we model 
individual scratchpads per-accelerator and generate DMA code 
to move data into and out of the accelerator. We assume a 
particularly aggressive oracle DMA implementation, and auto 
generate the DMA operations based on the memory accesses 
we observe in the dynamic trace of the application. We only 
DMA into the accelerator scratchpad read data and DMA out 
dirty data. All the benchmarks have working set sizes larger 



Table 3: Accelerator Execution Metrics 

Function KCyc. LT %En. Function KCyc. LT %En. 
FFT (Cache/Compute Energy = 0.8) 

step 1 25.3 500 34 step4 9 .9 700 
step2 7 . 1  700 4 stepS 9 .9 700 
step3 23.5 200 35 step6 l7 .8  500 

Disparity 0.6) 
padarray4 1 1 .2 500 5 finalSAD 25.9 500 
SAD 27.7 500 25 finalDisp 7 1 .4 500 
2D2D 34.2 500 14 

Tracking (0.5) 
imgBlur 9587 700 48 calcSobel 7358 720 
imgResize 3837 770 1 8  

Histogram (2.7) 
rgb2hsl 38007 500 47 equaliz. 3250 500 
histogram 3244 500 2 hsl2rgb 6967 1 500 

ADPCM (9.7) 
coder 3453 1400 55 decoder 3364 1400 

Filter (4.9) 
medfilt 48403 400 49 edgefilt 5663 400 

Susan (3 . 1 )  
bright 1 8 .6 1 000 1 corn 6328 1 200 
smooth 61496 l700 86 edges 1 8858 l700 

KCyc. :  ExecutIOn time (K Cycles), LT: lease time assigned to blocks, 
%En. : % of total accelerator energy. Cache / Core energy ratio 
shown in brackets beside benchmark name. 

6 
6 

1 5  

23 
33 

34 

1 
50 

45 

5 1  

5 
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than the scratchpad (4096 bytes) and thus are segmented into 
"windows" of execution with DMA operations required for 
each window. We faithfully model the complete state machine 
of the DMA controller and assume that it resides at the host's 
LLC i.e., no overhead for issuing DMA requests. 
ii) SHARED: This system models a single shared LI cache 
for all the accelerators in a tile. We collocate the functions 
from the same application in a tile and ensure that there is no 
inter-tile communication between offloaded functions from 
the same application. 
iii) Finally, FUSION and FUSION-Dx include the full cache 
hierarchy with private LOXs and shared LIX. GEMS was 
modified to add support for interfacing with the fixed-function 
accelerator cores and to model the ACC and MESI protocols 
along with their interaction in detail. 

Energy Model: To model the energy of fixed function ac­
celerators we use an activity count based power model from 
Aladdin [12]. We assume a 45nm ITRS HP technology. Cache 
energy is modeled using CACTI [23]; Table 2 lists the transis­
tor types we assume for each cache. The LOX tag accesses in­
clude a 32 bit time stamp field check which is accounted for as 
an 15% energy overhead. In the benchmarks studied, we find 
that provisioning for 24 bits accounts for 98% of accelerator in­
vocations; (HIST, F1LT and SUSAN have functions which run 
longer) and using 3 additional bits accounts for all invocations. 
We estimate link energy based on published figures [7] (lpj/m­
m/byte) and calculate wire length based on the area of the com­
ponents where W ire Length = 2 x L7=l vComponent_Areai, 
for each i E dataftow path). Table 2 lists our simulation param­
eters and Table 3 lists the % of energy spent in each accelerator 
and the ratio of energy spent in caches relative to compute. 
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5 Evaluation 

In this section, we evaluate the proposed FUSION architec­
ture and present our results as a set of "Lessons Learned" in 
the design and implementation of a lightweight coherent cache 
hierarchy for accelerators. The FUSION architecture is com­
pared to SCRATCH and SHARED designs and we present re­
sults for overall performance and energy before discussing the 
evaluation of i) Write-Back vs Write-Through at the LOX ii) 
accelerator cache sizes iii) address translation iv) the FUSION­
Dx design, optimized for producer consumer data sharing. 

5.1 Performance 

Lesson 1 : Small shared cache (LIX) improves perfor­

mance. The SHARED system, as described in [41], employs 
a shared 64KB cache to filter out accesses to the L2. Fig­
ure 6b, shows the cycle time of each system normalized to 
the SCRATCH system. FFT, DISP', TRACK., HIST spend a 
significant amount of time (82%) in DMA transfers and the 
SHARED system outperforms the SCRATCH system (average 
5.71 x). For ADPCM, SUSAN and F1LT, where the DMA 
cycle time is less than 40% of the total for the SCRATCH 
system, the SHARED system degrades performance by 14%. 
For these 3 benchmarks the working set size is less than 30kB. 
The high spatial locality is captured in the SCRATCH system 
and offers low latency access to the data. Thus the higher 
penalty per access to the shared LIX in the SHARED design 
causes a performance degradation. 

Lesson 2 : Small private caches (LOX) are needed to op­

timize for load-to-use latency. The FUSION system builds 
upon the SHARED system with the addition of coherent pri­
vate caches which are of the same size as the scratchpad in 
SCRATCH system. The FUSION system is able to capture the 
spatial locality for SUSAN, F1LT and ADPCM which is the 
cause of degradation in the SHARED system. The FUSION 
system improves performance over SCRATCH by 2.8 x. 

5.2 Energy 

The energy breakdown of the benchmarks are presented in 
Figure 6a. We observe that the energy tradeoffs of pull-based 
cache architectures are different from that of push-based DMA 
execution models. The results in this subsection indicate that 
when optimizing for energy, a single architectural paradigms 
does not fit all applications. 

For the SCRATCH system, FFT and DISP are dominated by 
the L2 access energy due to repeated inter-AXC DMA trans­
fers (963 and 640 respectively, see Table 6d). The large ratio 
of data transferred via DMA, column DMA(kB), compared 
to working set size, column WSet(kB), is an indicator of such 
pathological behaviour (165 for FFT). The SHARED system 
caches the AXC shared working set, eliminates spurious L2 
accesses and reduces energy consumption by 1O.6x and 7.6x 
for FFT and DISP. 

Lesson 3 : Small private caches (LOX) also improve en­

ergy. The FUSION system further reduces energy by intro-
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Energy WSet(kB) # DMA DMA #lines DMA(kB) DMA / WSet 
if 1 5  640 79550 2486 165.0 
if 1 63 963 130164 4067 25.0 
if 371  524 67450 2 1 07 5.7 
if 28 7508 7508 234 8 .3  
- 2 1  3466 3466 108 5 . 1  
- 2 1  1 5034 1 5034 470 22.0 
- 1 1 9 1  956 1 3  956 1 3  2988 2.5 

(d) DMA Breakdown 

Figure 6: Design tradeoffs in the accelerator cache hierarchy. X-Axis se : SCRATCH, SH : SHARED, FU : FUSION. V-Axis:  

Al l  plots, lower is  better and val ues are normal ized to SCRATCH system .  Note for the SHARED deSign,  the L1 X-+LOXDATA 

represents response from shared L1 X to AXe and LOX-+L1 XMSG represents req uests from AXe to the shared L1 X. For the 

SCRATCH deSign,  there is  only one link for data from L2 to the local scratch pad . 

ducing a 4K LOX which is 1.5 x more energy efficient than 
even a heavily banked L1X and filters out 83% and 80% of 
the accesses (effect seen in Figure 6c) to the LIX for FFT 
and DISP respectively significantly reducing the LOX-L1X 
link energy. TRACK. also spends a large fraction of energy 
in L2 accesses due to a large working set (371kB). Function 
imgResize, shares 99% of its data access (173 kB), trigger­
ing inter-AXe DMA transfers. The SHARED system and the 
FUSION system do not incur this overhead. 

Lesson 4 :  The LIX filters accesses to the L2 but 

LOX-+LIX coherence message overhead is significant. 

FILT has a large ratio of DMA data transferred with respect 
to working set size and SHARED and FUSION designs save 
energy by eliminating L2 accesses (filtered by shared L1X). 
This can be seen as the diminished L2 stack of Figure 6a. 
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However these gains are lost to repeated thrashing behaviour 
of the LOX as the benchmark iterates over each pixel in the im­
age. This increases coherence request messages between LOX 
and L1X (see Figure 6c), expending significant energy. Similar 
behaviour is also observed in SUSAN and HIST. HIST incurs 
additional penalty of coherence request messages (LIX-+L2) 
for the SHARED and FUSION designs; large working set 
(l191kB) does not fit in L1X. The FUSION design mitigates 
some of the degradation observed in the SHARED system (see 
Figure 6c), but not enough to provide an overall energy benefit 
for HlST. 

ADPCM sees a modest improvement of 4% as most of what 
is gained from the reduction in L2 accesses is lost in repeated 
LIX accesses. Overall FUSION reduces energy consumption 
by 2.4x, however for HIST, SUSAN and FILT, FUSION in-



creases energy consumption by 10% (improves performance 
by 67%). The SHARED system performs poorly in general 
due to the higher penalty of link energy for a) messages from 
AXC-+LlX (see Figure 6c) b) data from LlX-+AXC and c) 
access energy for the shared LIX cache. 

5.3 Writeback vs Write-Through at LOX 

Lesson 5 :  Write-through caches are expensive in terms of 

energy. Recent work [14, 32] have studied the effect of writes 
in data parallel accelerators and highlights their "bursty" be­
havior in GPGPU applications. For such applications, the con­
tention introduced by writeback operations may evict freshly 
read data. We find that in fixed-function accelerators, write 
caching at the LOX is an important requirement to exploit 
the inherent data locality of the offtoaded functions. Write­
through adds energy overhead due to data transfers on the 
LOX-+LlX link and LlX data access energy. In Table 4 we 
list the bandwidth consumption of both write-through and 
writeback models. We find that fixed-function accelerators 
that offload functions from existing programs reflect the lo­
cality behavior of the original program although the memory 
level parallelism may increase. 

Table 4: Bandwidth in Fl its (8bytes/fl it) 

Write-Through Writeback % Dirty Blocks 
FIT 230232 6642 39.5 
DlSP. 1 42656 40896 37.7 
TRACK. 2266764 1 9428 45.3 
ADPCM 3 1 88262 14100 46.9 
SUSAN 1 3973 1 87 8 1 600 3 5 . 1  
FlLT. 5728776 1 2096 5 1 .3 
HIST. 1 8575484 1 943 1 6  46.4 

5.4 FUSION-Dx : Write Forwarding 

# FWD Blocks AXC Cache AXC Link 
FFT 4309 6.4% 16 .9% 
TRACK. 4582 1 .5% 5 .7% 

Table 5 :  Inter-AXC forwarded blocks and percentage reduction 

i n  energy consumption per component 

Lesson 6 :  Protocol extensions can exploit inter-AXe pro­

ducer consumer relationships. Optimized hardware realiza­
tions of large functions are often split into smaller blocks [12]. 
Using a shared cache introduces writebacks for data which 
is written by an accelerator and read by the next, effectively 
creating a producer-consumer relationship. FUS10N-Dx opti­
mizes for such relationships as described in Section 3.2. For 
each block forwarded from an LOX, the FUSION-Dx system 
saves energy spent by the FUSION system in 1 WriteBack 
to LlX, 1 Read from LlX and 1 request from LOX-+LlX, 
while incurring the significantly lower cost of a LOX-+LOX 
transfer (0.1 pJ/byte). Table 5 enumerates the total number of 
blocks forwarded between AXe's of FFT and TRACK. and 
the corresponding savings in energy for the AXC component. 
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5.5 Larger AXe caches 

Lesson 7 : Larger may not be better. We experimented 
with a larger AXC cache configuration (AXC-Large) where 
the LOX was SKB (2x) in size while the LlX was 256KB 
(4x) in size. The working set sizes of the workloads were 
such that only 1 benchmark (D1SP ) fit into the Large-LlX 
(163kB footprint, see Table 6d) amongst the ones which did 
not fit into the Small-LlX (TRACK.,  HIST and DISP). For 
ADPCM, SUSAN and FILT (working set sizes smaller than 
30kB), the severe degradation seen in Figure 7 is due to the 
higher LlX access energy (2x as much as LlX-Small). There 
were negligible drops in miss rate for D1SP and TRACK. (less 
than 10 blocks) at the LOX. D1SP experienced 22% drop in 
LIX misses, which translated to a 3% reduction in cycle time 
(mostly obviated by the increased LlX access latency; 2 cycles 
more than LlX-Small). 

1 . 2  
o LARGE "! 00 r--: '-Cl - - - -
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Figure 7:  Compari ng the benefits of LARGE 

(LOX :8K B , L  1 X:256KB) vs SMALL (LOX :4K B , L  1 X :64KB) 

5.6 Address Translation 

Bench AX-TLB AX-RMAP 
FIT 5 1 4  4 1  
DlSP. 4243 589 
TRACK. 3237 83 1 
ADPCM 1447 548 
SUSAN 67 1 6 
FlLT. 668 1 8  
HIST. 60K 20 

Table 6: Virtual memory table look up count 

Lesson 8 : Address translation overheads need to be miti­

gated. The address translation energy is an important consid­
eration in coherent cache hierarchies [IS]. FUSION places the 
TLB off the critical path and on the shared LIX's miss path 
where the request has to transition into the physical address 
space. Here we illustrate the benefits by listing the number of 
look ups in the TLB for the baseline (64KB shared LlX). FU­
SION also needs reverse map look ups on forwarded requests 
from the host's shared L2. The host's directory tracks the 

f-
f-
f-
f-
f-
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accelerator tile in the sharer list and only forwards requests to 
lines cached in the accelerator tile. Table 6 lists the number of 
look ups to the AX-RMAP and AX-TLB. Overall, we expend 
less than 1 % of the energy on the AX-RMAP and AX-TLB; 
workloads that overflow the shared LIX and generate more 
misses, could possibly expend more energy. 

6 Related Work 

System-On-Chips: Chip designers have recognized the need 
for reducing the overhead of communication between the ac­
celerator and the host processor. Current ARM multicores 
include an AXI bus [ 1 0] that snoops the shared L2 on the 
multicore; similarly IBM's Power processor [4] includes a 
Powerbus that ensures the most-up-to-date data is read from 
the processor. Both systems are similar to the SCRATCH 
configuration we study. The host processor and DMA is re­
quired to move in and out of the scratchpad and between the 
accelerators. The DMA overheads are minimal when accelera­
tors are computationally intensive and read few data elements 
(e.g., cryptographic units) or have minimal interaction with 
each other (e.g., XML and cryptographic accelerators in Pow­
erEN [5] ) .  Past work [ 1 5 , 20] have also studied the benefits of 
integrating network cards with the last level cache of the chip. 
The type of accelerators we study in this paper are functions 
extracted from a sequential program that have plenty of read­
write sharing. In such cases, involving the DMA controller 
for moving shared data expends energy in the memory hier­
archy and adds latency to the critical path of the accelerator. 
The FUSION designs we study in this paper implicitly move 
data between the accelerators directly and minimizes the over­
heads of the locality lost as a result of the execution migration 
between the different accelerators. 

In-core Accelerators: Recent research from academia [ 1 1 , 26, 

36] has extracted accelerators from sequential programs and 
have proposed to integrate these accelerators at- the-core and 
leverage the host processor's L1 cache. Integrating tightly with 
the Ll cache enables the accelerators to maintain coherence. 
Unfortunately, the load-to-use latency of the Ll cache shared 
between the accelerators may introduce a performance over­
head. A pertinent example is the demosaic benchmark [26] 

which does not see as much of a performance gains as the 
other workloads due to the abundance of loads and stores. 
The SHARED configuration is a representative design and our 
analysis reveals that using a 64K shared cache to supply the 
accelerators results in a 2.7 x energy overhead compared to 
using a cache hierarchy for HIST., F1LT., SUSAN and ADPCM 
while saving 83% of energy for FFT, DlSP. and TRACK. [8] 

proposes an interesting design where the accelerator-cache 
interface is configurable. The accelerator may choose to share 
the Ll data cache of the core or use it's own private data 
cache. The coprocessor dominated architecture proposal [4 1 ] ,  

ensures that accelerators with higher memory traffic are placed 
closer to the shared Ll data cache of the host to reduce en­
ergy consumption. However typical Ll caches are designed 
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to meet the strict cycle-time constraints of the host processor 
and supplying data to accelerators with much higher memory 
level parallelism (up to 6 x )  is challenging. FUSION man­
ages the cache hierarchy between un-core accelerators using 
a lightweight hardware coherence protocol and we have also 
explored the benefits of actively forwarding data between the 
accelerators. 

Coherence Forwarding: Past work in academia [33 , 39] have 
extensively studied the benefits of pro actively forwarding and 
streaming data in mUltiprocessors to reduce cache misses and 
improve performance. Current multicores [9] have also in­
cluded coherence states to help with forwarding data between 
caches directly. Herein we have studied the benefits of proac­
tively pushing data to save energy. While past work studied 
the addition of forwarding support to lazy coherence proto­
cols [ 17] we have shown the benefit of adding forwarding to a 
time-stamp based protocol [3 1 , 32] .  

Un-core Accelerators: Vuletic et al. [38] propose a hardware 
memory management unit (WMU) to allow accelerators to 
operate in the virtual address space of the invoking process. 
DASX (data structure accelerator) [ 1 9] leverages LLC TLBs 
present in modern multicores to issue accesses to memory and 
maintains coherence at kernel boundaries. Recent research [6, 

40] incorporates application specific streaming frameworks 
independent of the host processor's cache hierarchy. FUSION 
allows accelerators to issue virtual memory addresses while 
removing address translation from the critical path; it also 
supports a flat coherence model. 

7 Summary 

The design tradeoffs for a coherent cache hierarchy for 
fixed-function accelerators have been evaluated. With the in­
creasing energy cost of interconnects and caches relative to 
compute, it is imperative to optimize data movement to retain 
the energy benefits of accelerators. We develop FUSION, a 
lightweight multi-level cache hierarchy for accelerators and 
study the tradeoffs compared to a scratch pad-based architec­
ture. FUSION leverages proposed time-stamp based coher­
ence [22, 3 1 , 32] to maintain coherency efficiently amongst the 
accelerator caches as well as integrating them with the MESI 
protocol. We find that i) small LO private caches are essential 
to retain the energy benefit of accelerators and ii) shared Ll 
caches help optimize data movement between the functions of­
floaded from the same program and minimize host-accelerator 
data transfers. A comprehensive toolchain was developed 
for modelling fixed-function accelerators in a cycle accurate 
manner and used to study the tradeoffs compared to optimized 
DMA code. We study multiple facets of the cache hierarchy in­
cluding write optimizations and evaluate the tradeoffs between 
the pull-based model of the cache hierarchy and push-based 
model of the DMA. 
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Appendix: Synonyms 

As others have noted [3] synonyms (particularly) read-write 
synonyms are not prevalent in applications; we did not find 
any in our applications. To support synonyms within the same 
program i.e., multiple virtual addresses accessing the same 
physical address, we check the AX-RMAP on accelerator tile 
requests. If any are found in the accelerator tile caches, the 
duplicate is evicted i.e., only one synonym is permitted in the 
accelerator tile. FUSION does not support sharing of data 
between functions offloaded from different processes. 


